Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
J Virol ; 97(12): e0133823, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38009916

RESUMO

IMPORTANCE: Betacoronaviruses, including severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and mouse hepatitis virus (MHV), exploit the lysosomal exocytosis pathway for egress. However, whether all betacoronaviruses members use the same pathway to exit cells remains unknown. Here, we demonstrated that porcine hemagglutinating encephalomyelitis virus (PHEV) egress occurs by Arl8b-dependent lysosomal exocytosis, a cellular egress mechanism shared by SARS-CoV-2 and MHV. Notably, PHEV acidifies lysosomes and activates lysosomal degradative enzymes, while SARS-CoV-2 and MHV deacidify lysosomes and limit the activation of lysosomal degradative enzymes. In addition, PHEV release depends on V-ATPase-mediated lysosomal pH. Furthermore, this is the first study to evaluate ßCoV using lysosome for spreading through the body, and we have found that lysosome played a critical role in PHEV neural transmission and brain damage caused by virus infection in the central nervous system. Taken together, different betacoronaviruses could disrupt lysosomal function differently to exit cells.


Assuntos
Betacoronavirus 1 , Infecções por Coronavirus , Exocitose , Lisossomos , Neurônios , Animais , Camundongos , Betacoronavirus 1/metabolismo , Lisossomos/enzimologia , Lisossomos/metabolismo , Lisossomos/virologia , Vírus da Hepatite Murina/metabolismo , Neurônios/enzimologia , Neurônios/metabolismo , Neurônios/patologia , Neurônios/virologia , SARS-CoV-2/metabolismo , Suínos/virologia , Concentração de Íons de Hidrogênio , ATPases Vacuolares Próton-Translocadoras/metabolismo , Infecções por Coronavirus/patologia , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia
2.
Vopr Virusol ; 67(6): 465-474, 2023 02 07.
Artigo em Russo | MEDLINE | ID: mdl-37264836

RESUMO

INTRODUCTION: Bovine coronaviruses (BCoVs) are causative agents of diarrhea, respiratory diseases in calves and winter cow dysentery. The study of genetic diversity of these viruses is topical issue. The purpose of the research is studying the genetic diversity of BCoV isolates circulating among dairy cattle in Siberia. MATERIALS AND METHODS: Specimens used in this study were collected from animals that died or was forcedly slaughtered before the start of the study. The target for amplification were nucleotide sequences of S and N gene regions. RESULTS: Based on the results of RT-PCR testing, virus genome was present in 16.3% of samples from calves with diarrheal syndrome and in 9.9% with respiratory syndrome. The nucleotide sequences of S gene region were determined for 18 isolates, and N gene sequences - for 12 isolates. Based on S gene, isolates were divided into two clades each containing two subclades. First subclade of first clade (European line) included 11 isolates. Second one included classic strains Quebec and Mebus, strains from Europe, USA and Korea, but none of sequences from this study belonged to this subclade. 6 isolates belonged to first subclade of second clade (American-Asian line). Second subclade (mixed line) included one isolate. N gene sequences formed two clades, one of them included two subclades. First subclade included 3 isolates (American-Asian line), and second subclade (mixed) included one isolate. Second clade (mixed) included 8 sequences. No differences in phylogenetic grouping between intestinal and respiratory isolates, as well as according to their geographic origin were identified. CONCLUSION: The studied population of BCoV isolates is heterogeneous. Nucleotide sequence analysis is a useful tool for studying molecular epidemiology of BCoV. It can be beneficial for choice of vaccines to be used in a particular geographic region.


Assuntos
Betacoronavirus 1 , Doenças dos Bovinos , Infecções por Coronavirus , Coronavirus Bovino , Coronavirus , Feminino , Bovinos , Animais , Coronavirus Bovino/genética , Coronavirus/genética , Filogenia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/veterinária , Diarreia/epidemiologia , Diarreia/veterinária , Variação Genética , Doenças dos Bovinos/epidemiologia
4.
Vet Clin North Am Equine Pract ; 39(1): 55-71, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36737293

RESUMO

Coronaviruses are a group of related RNA viruses that cause diseases in mammals and birds. In equids, equine coronavirus has been associated with diarrhea in foals and lethargy, fever, anorexia, and occasional gastrointestinal signs in adult horses. Although horses seem to be susceptible to the human severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) based on the high homology to the ACE-2 receptor, they seem to be incidental hosts because of occasional SARS-CoV-2 spillover from humans. However, until more clinical and seroepidemiological data are available, it remains important to monitor equids for possible transmission from humans with clinical or asymptomatic COVID-19.


Assuntos
Betacoronavirus 1 , COVID-19 , Doenças dos Cavalos , Cavalos , Animais , Humanos , COVID-19/veterinária , SARS-CoV-2 , Mamíferos
5.
Equine Vet J ; 55(3): 481-486, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35822940

RESUMO

BACKGROUND: Equine coronavirus (ECoV) causes fever, lethargy, anorexia and gastrointestinal signs in horses. There has been limited information about the prevalence and seasonality of ECoV among Thoroughbreds in Japan. OBJECTIVES: To understand the epidemiology and to evaluate the potential risk of ECoV infection to the horse industry in Japan. STUDY DESIGN: Longitudinal. METHODS: The virus-neutralisation (VN) test was performed using sera collected three times a year at 4 months intervals from 161 yearlings and at 6-7 months intervals from 181 active racehorses in Japan in 2017-2018, 2018-2019 and 2019-2020. VN titre ≥1:8 was defined as seropositive, and ≥4-fold increase in titres between paired sera was regarded as indicative of infection. RESULTS: The VN test showed that 44.1% (71/161) of yearlings were seropositive in August, when they first entered the yearling farm. The infection rate was significantly higher between August and December (60.9%, 98/161) than between December and the following April (5.6%, 9/161; p = 0.002). Among the racehorses, it was significantly higher between November and the following May (15.5%, 28/181) than between the preceding April/May and November (0%; p = 0.02). The morbidity rates during the estimated periods of viral exposure were 39.2% in the yearlings and 4% in the racehorses. No horses showed any severe clinical signs. MAIN LIMITATIONS: Clinical records did not cover the period during horses' absence from the training centre. CONCLUSIONS: ECoV was substantially prevalent in Thoroughbred yearlings and racehorses in Japan, and there was a difference in epizootic pattern between these populations in terms of predominant periods of infection. ECoV infection was considered to be responsible for some of the pyretic cases in the yearlings. However, no diseased horses were severely affected in either population, suggesting that the potential risk of ECoV infection to the horse industry in Japan is low.


Assuntos
Betacoronavirus 1 , Infecções por Coronavirus , Doenças dos Cavalos , Animais , Cavalos , Japão/epidemiologia , Doenças dos Cavalos/diagnóstico , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/diagnóstico , Testes Sorológicos/veterinária
6.
mBio ; 14(1): e0305422, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36541757

RESUMO

Porcine hemagglutinating encephalomyelitis virus (PHEV) is a member of the family Coronaviridae, genus Betacoronavirus, and subgenus Embecovirus that causes neurological disorders, vomiting and wasting disease (VWD), or influenza-like illness (ILI) in pigs. Exosomes regulate nearby or distant cells as a means of intercellular communication; however, whether they are involved in the transmission of viral reference materials during PHEV infection is unknown. Here, we collected exosomes derived from PHEV-infected neural cells (PHEV-exos) and validated their morphological, structural, and content characteristics. High-resolution mass spectrometry indicated that PHEV-exos carry a variety of cargoes, including host innate immunity sensors and viral ingredients. Furthermore, transwell analysis revealed that viral ingredients, such as proteins and RNA fragments, could be encapsulated in the exosomes of multivesicular bodies (MVBs) to nonpermissive microglia. Inhibition of exosome secretion could suppress PHEV infection. Therefore, we concluded that the mode of infectious transmission of PHEV is likely through a mixture of virus-modified exosomes and virions and that exosomal export acts as a host strategy to induce an innate response in replicating nonpermissive bystander cells free of immune system recognition. IMPORTANCE The novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a large number of deaths worldwide. Clinical neurological complications have occurred in some cases; however, knowledge of the natural history of coronavirus in the central nervous system (CNS) is thus far limited. PHEV is a typical neurotropic betacoronavirus (ß-CoV) that propagates via neural circuits in the host CNS after peripheral incubation rather than through the bloodstream. It is therefore a good prototype pathogen to investigate the neuropathological pathogenesis of acute human coronavirus infection. In this study, we demonstrate a new association between host vesicle-based secretion and PHEV infection, showing that multivesicular-derived exosomes are one of the modes of infectious transmission and that they mediate the transfer of immunostimulatory cargo to uninfected neuroimmune cells. These findings provide novel insights into the treatment and monitoring of neurological consequences associated with ß-CoV, similar to those associated with SARS-CoV-2.


Assuntos
Betacoronavirus 1 , COVID-19 , Exossomos , Suínos , Animais , Humanos , Betacoronavirus 1/genética , Betacoronavirus 1/metabolismo , SARS-CoV-2
7.
Virol J ; 19(1): 226, 2022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-36578037

RESUMO

BACKGROUND: Porcine hemagglutinating encephalomyelitis virus (PHEV), a member of the genus Betacoronavirus, is the causative agent of neurological disease in pigs. No effective therapeutics are currently available for PHEV infection. Resveratrol has been shown to exert neuroprotective and antiviral effects. Here resveratrol was investigated for its ability to inhibit PHEV replication in nerve cells and central nervous system tissues. METHODS: Anti-PHEV effect of resveratrol was evaluated using an in vitro cell-based PHEV infection model and employing a mouse PHEV infection model. The collected cells or tissues were used for quantitative PCR analysis, western blot analysis, or indirect immunofluorescence assay. The supernatants were collected to quantify viral loads by TCID50 assay in vitro. EC50 and CC50 were determined by dose-response experiments, and the ratio (EC50/CC50) was used as a selectivity index (SI) to measure the antiviral versus cytotoxic activity. RESULTS: Our results showed that resveratrol treatment reduced PHEV titer in a dose-dependent manner, with a 50% inhibition concentration of 6.24 µM. A reduction of > 70% of viral protein expression and mRNA copy number and a 19-fold reduction of virus titer were achieved when infected cells were treated with 10 µM resveratrol in a pre-treatment assay. Quantitative PCR analysis and TCID50 assay results revealed that the addition of 10 µM resveratrol to cells after adsorption of PHEV significantly reduced 56% PHEV mRNA copy number and eightfold virus titer. 10 µM resveratrol treatment reduced 46% PHEV mRNA copy number and fourfold virus titer in virus inactivation assay. Moreover, the in vivo data obtained in this work also demonstrated that resveratrol inhibited PHEV replication, and anti-PHEV activities of resveratrol treatment via intranasal installation displayed better than oral gavage. CONCLUSION: These results indicated that resveratrol exerted antiviral effects under various drug treatment and virus infection conditions in vitro and holds promise as a treatment for PHEV infection in vivo.


Assuntos
Betacoronavirus 1 , Camundongos , Suínos , Animais , Resveratrol/farmacologia , Resveratrol/metabolismo , Betacoronavirus 1/genética , Betacoronavirus 1/metabolismo , Neurônios , Antivirais/farmacologia , Antivirais/metabolismo , Replicação Viral
8.
Schweiz Arch Tierheilkd ; 164(10): 733-739, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36193783

RESUMO

INTRODUCTION: Outbreaks of equine coronavirus (ECoV) infections have been described in different parts of the world including Europe. The aim of this report was to describe clinical signs, diagnostic work-up and outcome of the first documented outbreak of ECoV in Switzerland in order to raise the awareness for the disease and its various clinical presentations. The outbreak occurred on a farm with 26 horses. Of these, seven horses developed clinical disease ranging from mild signs such as fever and anorexia to severe signs of acute colitis. One horse died due to severe endotoxemia and circulatory shock secondary to severe acute necrotizing enteritis and colitis. Out of the 26 horses, five horses tested positive for ECoV, including two ponies without any clinical signs of infection. The low number of positive cases should nevertheless be interpreted with caution as testing was only performed on one occasion, over a month after the onset of clinical signs in the first suspected case. This report highlights the importance of diagnostic testing and early implementation of biosecurity measures on a farm with an ECoV outbreak. It should furthermore raise the awareness for unspecific and mild clinical signs such as fever and anorexia in affected animals that are potentially able to spread the disease.


INTRODUCTION: Des foyers d'infection à coronavirus équin (ECoV) ont été décrits dans différentes parties du monde, y compris en Europe. L'objectif de ce rapport est de décrire les signes cliniques, le diagnostic et les conséquences du premier foyer d'ECoV documenté en Suisse, afin de sensibiliser le public à cette maladie et à ses différents aspects cliniques. L'épidémie s'est produite dans une écurie comptant 26 chevaux. Parmi ceux-ci, sept chevaux ont développé une forme clinique allant de signes légers tels que la fièvre et l'anorexie à des signes sévères de colite aiguë. Un cheval est mort en raison d'une endotoxémie sévère et d>un choc circulatoire secondaire à une entérite nécrosante aiguë sévère et à une colite. Sur les 26 chevaux, cinq ont été testés positifs à l>ECoV, dont deux poneys sans aucun signe clinique d'infection. Le faible nombre de cas positifs doit néanmoins être interprété avec prudence car les tests n'ont été effectués qu'à une seule occasion, plus d'un mois après l'apparition des signes cliniques chez le premier cas suspect. Ce rapport souligne l'importance des tests de diagnostic et de la mise en œuvre rapide de mesures de biosécurité dans une exploitation où un foyer d'ECoV est détecté. Il devrait en outre sensibiliser à la présence de signes cliniques peu spécifiques et bénins tels que la fièvre et l'anorexie chez les animaux atteints qui sont potentiellement capables de propager la maladie.


Assuntos
Betacoronavirus 1 , Colite , Infecções por Coronavirus , Doenças dos Cavalos , Animais , Anorexia/veterinária , Colite/epidemiologia , Colite/veterinária , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/veterinária , Surtos de Doenças/veterinária , Fezes , Doenças dos Cavalos/diagnóstico , Cavalos , Suíça/epidemiologia
9.
PLoS Pathog ; 18(6): e1010667, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35759516

RESUMO

Porcine hemagglutinating encephalomyelitis virus (PHEV) is a highly neurotropic coronavirus belonging to the genus Betacoronavirus. Similar to pathogenic coronaviruses to which humans are susceptible, such as SARS-CoV-2, PHEV is transmitted primarily through respiratory droplets and close contact, entering the central nervous system (CNS) from the peripheral nerves at the site of initial infection. However, the neuroinvasion route of PHEV are poorly understood. Here, we found that BALB/c mice are susceptible to intranasal PHEV infection and showed distinct neurological manifestations. The behavioral study and histopathological examination revealed that PHEV attacks neurons in the CNS and causes significant smell and taste dysfunction in mice. By tracking neuroinvasion, we identified that PHEV invades the CNS via the olfactory nerve and trigeminal nerve located in the nasal cavity, and olfactory sensory neurons (OSNs) were susceptible to viral infection. Immunofluorescence staining and ultrastructural observations revealed that viral materials traveling along axons, suggesting axonal transport may engage in rapid viral transmission in the CNS. Moreover, viral replication in the olfactory system and CNS is associated with inflammatory and immune responses, tissue disorganization and dysfunction. Overall, we proposed that PHEV may serve as a potential prototype for elucidating the pathogenesis of coronavirus-associated neurological complications and olfactory and taste disorders.


Assuntos
Betacoronavirus 1 , COVID-19 , Infecções por Coronavirus/patologia , Transtornos do Olfato , Animais , Betacoronavirus 1/fisiologia , Humanos , Camundongos , Transtornos do Olfato/virologia , SARS-CoV-2 , Olfato , Suínos
10.
Vet Microbiol ; 269: 109448, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35533578

RESUMO

Porcine hemagglutinating encephalomyelitis virus (PHEV) is a typical neurotropic betacoronavirus causing digestive disease and/or neurological dysfunction in neonatal pigs. Actin filaments have been identified to implicate in PHEV invasion, but the effects of viral infection on microtubules (MTs) cytoskeleton are unknown. Here, we observed that PHEV infection induced MT depolymerization and was accompanied by the disappearance of microtubule organizing centers. Depolymerization of MTs induced by nocodazole significantly inhibited viral RNA replication, but over-polymerization of MTs induced by paclitaxel did not substantially affect PHEV infection. The expression of histone deacetylase 6 (HDAC6), an important regulator of MT acetylation, progressively increased during PHEV infection. Tramstatin A could alter HDAC6 deacetylase activity to enhance the acetylation of the substrate α-tubulin and MT polymerization, but does not increase PHEV proliferation. These findings suggest that PHEV could subvert host MT cytoskeleton to facilitate infection, and that MT depolymerization negatively affects viral replication independently of HDAC6 activity.


Assuntos
Betacoronavirus 1 , Infecções por Coronavirus , Doenças dos Suínos , Animais , Betacoronavirus , Infecções por Coronavirus/veterinária , Microtúbulos , Suínos , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Replicação Viral
11.
Arch Virol ; 167(8): 1611-1618, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35639190

RESUMO

Equine coronavirus (ECoV) causes pyrexia, anorexia, lethargy, and sometimes diarrhoea. Infected horses excrete the virus in their faeces, and ECoV is also detected in nasal samples from febrile horses. However, details about ECoV infection sites in the intestinal and respiratory tracts are lacking. To identify the ECoV infection sites in the intestinal and respiratory tracts, we performed an experimental infection study and analysed intestinal and respiratory samples collected from four infected horses at 3, 5, 7, and 14 days post-inoculation (dpi) by real-time reverse transcription polymerase chain reaction (real-time RT-PCR) and in situ hybridization (ISH). Two horses became febrile, but the other two did not. None of the horses had diarrhoea or respiratory signs, and severe cases were not observed in this study. None of the horses showed obvious abnormalities in their intestinal or respiratory tracts. Real-time RT-PCR and ISH showed that ECoV RNA was present throughout the intestinal tract, and ECoV-positive cells were mainly detected on the surface of the intestine. In one horse showing viremia at 3 dpi, ECoV RNA was detected in the lung by real-time RT-PCR, but not by ISH. This suggests that the lung cells themselves were not infected with ECoV and that real-time RT-PCR detected viremia in the lung. The other three horses were positive for ECoV RNA in nasal swabs but were negative in the trachea and lung by real-time RT-PCR and ISH. This study suggests that ECoV broadly infects the intestinal tract and is less likely to infect the respiratory tract.


Assuntos
Betacoronavirus 1 , Infecções por Coronavirus , Doenças dos Cavalos , Animais , Infecções por Coronavirus/veterinária , Diarreia , Febre , Cavalos , Intestinos , RNA , Sistema Respiratório , Viremia
12.
Arch Virol ; 167(5): 1381-1385, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35397684

RESUMO

Porcine hemagglutinating encephalomyelitis virus (PHEV) is a member of the subgenus Embecovirus of the genus Betacoronavirus, and it is ubiquitously distributed in most pig-farming countries worldwide with low clinical incidence. Here, we report the full-length genome sequence and molecular characterization of a novel PHEV strain identified in diarrheic neonates in South Korea. The complete genome of the Korean PHEV strain GNU-2113 was sequenced and analyzed to characterize PHEV circulating in South Korea. The GNU-2113 genome was determined to be 29,982 nucleotides in length, with large unique deletions in the regions encoding nonstructural protein 3 and NS2. It was found to share 95.1-96.9% sequence identity with other global strains. Genetic and phylogenetic analysis indicated that the GNU-2113 strain is distantly related to the existing PHEV genotypes, implying that the virus appears to undergo substantial evolution under endemic pressure. This study provides important information about the genetic diversity of PHEV circulating subclinically in swine herds, which may ensure viral fitness in the enzootic environment.


Assuntos
Betacoronavirus 1 , Doenças dos Suínos , Animais , Betacoronavirus 1/genética , Genoma Viral , Genótipo , Filogenia , República da Coreia , Análise de Sequência de DNA , Suínos
13.
Transbound Emerg Dis ; 69(4): 1691-1694, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35243797

RESUMO

Coronaviruses are causing severe respiratory and enteric diseases in humans and animals. Here, we report an outbreak of equine coronavirus disease in adult horses, detected by a voluntary syndromic surveillance scheme for equine diseases in Switzerland. This scheme allowed a rapid concerted action to diagnose and contain the disease.


Assuntos
Betacoronavirus 1 , Infecções por Coronavirus , Coronavirus , Doenças dos Cavalos , Animais , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/veterinária , Surtos de Doenças/veterinária , Cavalos , Humanos , Suíça/epidemiologia
14.
Emerg Microbes Infect ; 11(1): 1010-1013, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35311478

RESUMO

Equine coronavirus (ECoV) was first identified in the USA and has been previously described in several countries. In order to test the presence of ECoV in China, we collected 51 small intestinal samples from donkey foals with diarrhoea from a donkey farm in Shandong Province, China between August 2020 and April 2021. Two samples tested positive for ECoV and full-length genome sequences were successfully obtained using next-generation sequencing, one of which was further confirmed by Sanger sequencing. The two strains shared 100% sequence identity at the scale of whole genome. Bioinformatics analyses further showed that the two Chinese strains represent a novel genetic variant of ECoV and shared the highest sequence identity of 97.05% with the first identified ECoV strain - NC99. In addition, it may be a recombinant, with the recombination region around the NS2 gene. To our knowledge, this is the first documented report of ECoV in China, highlighting its risk to horse/donkey breeding. In addition, its potential risk to public health also warrants further investigation.


Assuntos
Betacoronavirus 1 , Infecções por Coronavirus , Doenças dos Cavalos , Animais , China/epidemiologia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/veterinária , Diarreia/veterinária , Equidae , Doenças dos Cavalos/epidemiologia , Cavalos , Filogenia
15.
Vet Microbiol ; 265: 109315, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34972029

RESUMO

Porcine hemagglutinating encephalomyelitis virus (PHEV) is a neurotropic coronavirus and highly pathogenic in veterinary clinic. Spike (S) protein of PHEV interplays with host components to cross the plasma membrane of target cells, but characterization of its functional receptors is limited. Here, we discovered that cell-surface glycans, i.e., sialic acid (SA) and heparan sulfate (HS), act as critical interacting factors of PHEV, involving in viral attachment. As shown in glycans depletion assay, removing SA or HS from N2a cells inhibits PHEV infection. Soluble sugar monomers were utilized for competitive binding tests, and we found that both SA and HS could specifically bind to PHEV and affect the viral infectivity. Furthermore, the expression of heparan sulfate proteoglycans (HSPGs), including syndecans and glypicans, and endoglycosidase heparinase which cleaves HS were regulated by PHEV RNA replication. Together, we newly identified specificity recognition of cellular glycans and PHEV during infection, providing novel cellular targets for antiviral therapies and better understanding of pathogenesis.


Assuntos
Betacoronavirus 1 , Membrana Celular , Polissacarídeos , Ligação Viral , Animais , Linhagem Celular , Suínos
16.
J Virol ; 96(1): e0169521, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34643429

RESUMO

The replication of coronaviruses, including severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and the recently emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is closely associated with the endoplasmic reticulum (ER) of infected cells. The unfolded protein response (UPR), which is mediated by ER stress (ERS), is a typical outcome in coronavirus-infected cells and is closely associated with the characteristics of coronaviruses. However, the interaction between virus-induced ERS and coronavirus replication is poorly understood. Here, we demonstrate that infection with the betacoronavirus porcine hemagglutinating encephalomyelitis virus (PHEV) induced ERS and triggered all three branches of the UPR signaling pathway both in vitro and in vivo. In addition, ERS suppressed PHEV replication in mouse neuro-2a (N2a) cells primarily by activating the protein kinase R-like ER kinase (PERK)-eukaryotic initiation factor 2α (eIF2α) axis of the UPR. Moreover, another eIF2α phosphorylation kinase, interferon (IFN)-induced double-stranded RNA-dependent protein kinase (PKR), was also activated and acted cooperatively with PERK to decrease PHEV replication. Furthermore, we demonstrate that the PERK/PKR-eIF2α pathways negatively regulated PHEV replication by attenuating global protein translation. Phosphorylated eIF2α also promoted the formation of stress granules (SGs), which in turn repressed PHEV replication. In summary, our study presents a vital aspect of the host innate response to invading pathogens and reveals attractive host targets (e.g., PERK, PKR, and eIF2α) for antiviral drugs. IMPORTANCE Coronavirus diseases are caused by different coronaviruses of importance in humans and animals, and specific treatments are extremely limited. ERS, which can activate the UPR to modulate viral replication and the host innate response, is a frequent occurrence in coronavirus-infected cells. PHEV, a neurotropic betacoronavirus, causes nerve cell damage, which accounts for the high mortality rates in suckling piglets. However, it remains incompletely understood whether the highly developed ER in nerve cells plays an antiviral role in ERS and how ERS regulates viral proliferation. In this study, we found that PHEV infection induced ERS and activated the UPR both in vitro and in vivo and that the activated PERK/PKR-eIF2α axis inhibited PHEV replication through attenuating global protein translation and promoting SG formation. A better understanding of coronavirus-induced ERS and UPR activation may reveal the pathogenic mechanism of coronavirus and facilitate the development of new treatment strategies for these diseases.


Assuntos
Betacoronavirus 1/fisiologia , Infecções por Coronavirus/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Grânulos de Estresse/metabolismo , Replicação Viral/fisiologia , eIF-2 Quinase/metabolismo , Animais , Betacoronavirus 1/metabolismo , Linhagem Celular , Infecções por Coronavirus/virologia , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Estresse do Retículo Endoplasmático , Camundongos , Fosforilação , Biossíntese de Proteínas , Transdução de Sinais , Resposta a Proteínas não Dobradas
17.
mSphere ; 6(6): e0082021, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34935443

RESUMO

The upper respiratory tract is the primary site of infection by porcine hemagglutinating encephalomyelitis virus (PHEV). In this study, primary porcine respiratory epithelial cells (PRECs) were cultured in an air-liquid interface (ALI) to differentiate into a pseudostratified columnar epithelium, proliferative basal cells, M cells, ciliated cells, and mucus-secreting goblet cells. ALI-PRECs recreates a cell culture environment morphologically and functionally more representative of the epithelial lining of the swine trachea than traditional culture systems. PHEV replicated actively in this environment, inducing cytopathic changes and progressive disruption of the mucociliary apparatus. The innate immunity against PHEV was comparatively evaluated in ALI-PREC cultures and tracheal tissue sections derived from the same cesarean-derived, colostrum-deprived (CDCD) neonatal donor pigs. Increased expression levels of TLR3 and/or TLR7, RIG1, and MyD88 genes were detected in response to infection, resulting in the transcriptional upregulation of IFN-λ1 in both ALI-PREC cultures and tracheal epithelia. IFN-λ1 triggered the upregulation of the transcription factor STAT1, which in turn induced the expression of the antiviral IFN-stimulated genes OAS1 and Mx1. No significant modulation of the major proinflammatory cytokines interleukin-1ß (IL-1ß), IL-6, and tumor necrosis factor alpha (TNF-α) was detected in response to PHEV infection. However, a significant upregulation of different chemokines was observed in ALI-PREC cultures (CCL2, CCL5, CXCL8, and CXCL10) and tracheal epithelium (CXCL8 and CXCL10). This study shed light on the molecular mechanisms driving the innate immune response to PHEV at the airway epithelium, underscoring the important role of respiratory epithelial cells in the maintenance of respiratory homeostasis and on the initiation, resolution, and outcome of the infectious process. IMPORTANCE The neurotropic betacoronavirus porcine hemagglutinating encephalomyelitis virus (PHEV) primarily infects and replicates in the swine upper respiratory tract, causing vomiting and wasting disease and/or encephalomyelitis in suckling pigs. This study investigated the modulation of key early innate immune genes at the respiratory epithelia in vivo, on tracheal tissue sections from experimentally infected pigs, and in vitro, on air-liquid interface porcine respiratory cell cultures. The results from the study underscore the important role of respiratory epithelial cells in maintaining respiratory homeostasis and on the initiation, resolution, and outcome of the PHEV infectious process.


Assuntos
Betacoronavirus 1/fisiologia , Interferons/genética , Interleucina-8/imunologia , Receptores de Reconhecimento de Padrão/genética , Mucosa Respiratória/imunologia , Mucosa Respiratória/virologia , Replicação Viral , Animais , Animais Recém-Nascidos , Betacoronavirus 1/imunologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Imunidade Inata/genética , Imunidade Inata/imunologia , Interferons/imunologia , Interleucina-8/genética , Mucosa Respiratória/patologia , Suínos , Regulação para Cima , Replicação Viral/imunologia
18.
J Virol ; 95(19): e0085121, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34287052

RESUMO

Uncoordinated 51-like kinase 1 (ULK1) is a well-characterized initiator of canonical autophagy under basal or pathological conditions. Porcine hemagglutinating encephalomyelitis virus (PHEV), a neurotropic betacoronavirus (ß-CoV), impairs ULK1 kinase but hijacks autophagy to facilitate viral proliferation. However, the machinery of PHEV-induced autophagy initiation upon ULK1 kinase deficiency remains unclear. Here, the time course of PHEV infection showed a significant accumulation of autophagosomes (APs) in nerve cells in vivo and in vitro. Utilizing ULK1-knockout neuroblastoma cells, we have identified that ULK1 is not essential for productive AP formation induced by PHEV. In vitro phosphorylation studies discovered that mTORC1-regulated ULK1 activation stalls during PHEV infection, whereas AP biogenesis was controlled by AMPK-driven BECN1 phosphorylation. A lack of BECN1 is sufficient to block LC3 lipidation and disrupt recruitment of the LC3-ATG14 complex. Moreover, BECN1 acts as a bona fide substrate for ULK1-independent neural autophagy, and ectopic expression of BECN1 somewhat enhances PHEV replication. These findings highlight a novel machinery of noncanonical autophagy independent of ULK1 that bypasses the conserved initiation circuit of AMPK-mTORC1-ULK1, providing new insights into the interplay between neurotropic ß-CoV and the host. IMPORTANCE The ongoing coronavirus disease 2019 (COVID-19) pandemic alongside the outbreaks of severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) pose Betacoronavirus (ß-CoV) as a global public health challenge. Coronaviruses subvert, hijack, or utilize autophagy to promote proliferation, and thus, exploring the cross talk between ß-CoV and autophagy is of great significance in confronting future ß-CoV outbreaks. Porcine hemagglutinating encephalomyelitis virus (PHEV) is a highly neurotropic ß-CoV that invades the central nervous system (CNS) in pigs, but understanding of the pathogenesis for PHEV-induced neurological dysfunction is yet limited. Here, we discovered a novel regulatory principle of neural autophagy initiation during PHEV infection, where productive autophagosome (AP) biogenesis bypasses the multifaceted regulation of ULK1 kinase. The PHEV-triggered noncanonical autophagy underscores the complex interactions of virus and host and will help in the development of therapeutic strategies targeting noncanonical autophagy to treat ß-CoV disease.


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Autofagia/fisiologia , Betacoronavirus 1/metabolismo , Animais , Autofagossomos/metabolismo , Proteína Beclina-1/metabolismo , COVID-19 , Linhagem Celular , Técnicas de Inativação de Genes , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Neurônios/metabolismo , Fosforilação , SARS-CoV-2
19.
Comp Immunol Microbiol Infect Dis ; 77: 101668, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34004508

RESUMO

In 2020, an outbreak of equine coronavirus (ECoV) infection occurred among 41 horses at a riding stable in Tokyo, Japan. This stable had 16 Thoroughbreds and 25 horses of other breeds, including Andalusians, ponies and miniature horses. Fifteen horses (37 %) showed mild clinical signs such as fever, lethargy, anorexia and diarrhoea, and they recovered within 3 days of onset. A virus neutralization test showed that all 41 horses were infected with ECoV, signifying that 26 horses (63 %) were subclinical. The results suggest that subclinical horses played an important role as spreaders. A genome sequence analysis revealed that the lengths from genes p4.7 to p12.7 or NS2 in ECoV differed from those of ECoVs detected previously, suggesting that this outbreak was caused by a virus different from those that caused previous outbreaks among draughthorses in Japan. Among 30 horses that tested positive by real-time RT-PCR, ECoV shedding periods of non-Thoroughbreds were significantly longer than those of Thoroughbreds. The difference in shedding periods may indicate that some breeds excrete ECoV longer than other breeds and can contribute to the spread of ECoV.


Assuntos
Betacoronavirus 1 , Infecções por Coronavirus , Doenças dos Cavalos , Animais , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/veterinária , Surtos de Doenças/veterinária , Doenças dos Cavalos/epidemiologia , Cavalos , Japão/epidemiologia , Tóquio
20.
J Virol ; 95(12)2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-33762411

RESUMO

Porcine hemagglutinating encephalomyelitis virus (PHEV) is a betacoronavirus that causes vomiting and wasting disease and/or encephalomyelitis in suckling pigs. This study characterized PHEV infection, pathogenesis, and immune response in cesarean-derived, colostrum-deprived (CDCD) neonatal pigs. Infected animals developed mild respiratory, enteric, and neurological clinical signs between 2 to 13 days postoronasal inoculation (dpi). PHEV did not produce viremia, but virus shedding was detected in nasal secretions (1 to 10 dpi) and feces (2 to 7 dpi) by reverse transcriptase quantitative PCR (RT-qPCR). Viral RNA was detected in all tissues except liver, but the detection rate and RT-qPCR threshold cycle (CT ) values decreased over time. The highest concentration of virus was detected in inoculated piglets necropsied at 5 dpi in turbinate and trachea, followed by tonsils, lungs, tracheobronchial lymph nodes, and stomach. The most representative microscopic lesions were gastritis lymphoplasmacytic, moderate, multifocal, with perivasculitis, and neuritis with ganglia degeneration. A moderate inflammatory response, characterized by increased levels of interferon alpha (IFN-α) in plasma (5 dpi) and infiltration of T lymphocytes and macrophages were also observed. Increased plasma levels of interleukin-8 (IL-8) were detected at 10 and 15 dpi, coinciding with the progressive resolution of the infection. Moreover, a robust antibody response was detected by 10 dpi. An ex vivo air-liquid CDCD-derived porcine respiratory cells culture (ALI-PRECs) system showed virus replication in ALI-PRECs and cytopathic changes and disruption of ciliated columnar epithelia, thereby confirming the tracheal epithelia as a primary site of infection for PHEV.IMPORTANCE Among the ∼46 virus species in the family Coronaviridae, many of which are important pathogens of humans and 6 of which are commonly found in pigs, porcine hemagglutinating encephalomyelitis remains one of the least researched. The present study provided a comprehensive characterization of the PHEV infection process and immune responses using CDCD neonatal pigs. Moreover, we used an ex vivo ALI-PRECs system resembling the epithelial lining of the tracheobronchial region of the porcine respiratory tract to demonstrate that the upper respiratory tract is a primary site of PHEV infection. This study provides a platform for further multidisciplinary studies of coronavirus infections.


Assuntos
Betacoronavirus 1/imunologia , Infecções por Coronavirus/imunologia , Interferon-alfa/imunologia , Interleucina-8/imunologia , Doenças dos Suínos/imunologia , Linfócitos T/imunologia , Animais , Linhagem Celular , Infecções por Coronavirus/patologia , Infecções por Coronavirus/veterinária , Especificidade de Órgãos/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Suínos , Doenças dos Suínos/patologia , Linfócitos T/patologia , Linfócitos T/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...